Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines
نویسندگان
چکیده
The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These "smart" systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking.
منابع مشابه
Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments
The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the...
متن کاملCombretastatin-A4 phosphate improves the distribution and antitumor efficacy of albumin-bound paclitaxel in W256 breast carcinoma model
Nanomedicine holds great promise for fighting against malignant tumors. However, tumor elevated interstitial fluid pressure (IFP) seriously hinders convective transvascular and interstitial transport of nanomedicines and thus damages its antitumor efficacy. In this study, combretastatin-A4 phosphate (CA4P) was utilized to reduce tumor IFP, and thereby to improve the intratumoral distribution an...
متن کاملModulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery
Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable ...
متن کاملStimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance
Chemotherapy is still a main option for cancer therapy, but its efficacy is often unsatisfying due to multidrug resistance (MDR). The tumor microenvironment is considered a dominant factor causing MDR. Stimuli-responsive nanomedicines exhibit many superiorities for reversal of MDR. As smart systems, stimuli-responsive nanomedicines are desirable for achieving site-specific accumulation and trig...
متن کاملTargeted Delivery of Nanomedicines
The role of targeting of the diseased region by a drug is emphasized. The rationale for resorting to nanomaterials as drug carriers is explained. A clear understanding of the biological environment, its degradation in diseased condition, and the interaction of the drug with it in normal condition and during illness lie at the core of successful drug delivery. Passive and active drug targeting a...
متن کامل